Multiple Choice Questions (45%)

Choose the Correct Answer

1	Α
2 - I	D
2 - II	В
2 - III	D
3	D
4	В
5	D
6	Α
7	D
8	В
9	D
10	В
11	А
12	В
13	В

14	В
15	В
16	С
17	С
18	В
19	С
20	С
21	С
22	D
23	В
24	D
25	D
26	Α
27	В
28	С

Exercises (55 %)

Exercise I:

1- Sales budget for the second quarter of year N:

	March	April	May
Sales	\$385,000	\$385,000	\$420,000

2- Purchases budget for the second quarter:

	April	May	June
Purchases	\$220,000	\$220,000	\$240,000
Other expenses relevant to purchases	\$2,200	\$2,200	\$2,400
Total	\$222,200	\$222,200	\$242,400

3- Schedule of expected cash collection:

	April	May	June
Sales of March	\$175,000		
Sales of April	\$192,500	\$192,500	
Sales of May		\$192,500	\$192,500
Sales of June			\$210,000
Sales of fixed assets		\$3,000	\$3,000
Total	\$367,500	\$388,000	\$405,500

4- Schedule of expected payment:

	April	May	June
Purchases of March (1)	\$151,500		
Purchases of April (2)	\$55,550	\$166,650	
Purchases of May (3)		\$55,550	\$166,650
Purchases of June (4)			\$60,600
External expenses	\$30,000	\$31,000	\$35,000
Personnel expenses	\$60,000	\$60,000	\$67,000
Taxes and fees			\$3,000
Purchase of transport vehicle		\$35,000	
Total	\$297,050	\$348,200	\$332,250

5- Cash budget:

	April	May	June
Cash account at month beginning	\$85,000	\$155,450	\$195,250
Cash collection of the month	\$367,500	\$388,000	\$405,500
Payments of the month	\$297,050	\$348,200	\$332,250
Cash balance	\$155,450	\$195,250	\$268,500

Exercise II:

1. The annual net cash inflow can be computed by deducting the cash expenses from sales:

Sales	\$3,000,000
Variable expenses	1,800,000
Contribution margin	1,200,000
Advertising, salaries, and other fixed out-of-pocket costs	700,000
Annual net cash inflow	<u>\$ 500,000</u>

Or the annual net cash inflow can be computed by adding depreciation back to net operating income:

Net operating income	\$200,000
Add: Noncash deduction for depreciation	300,000
Annual net cash inflow	\$500,000

2. The net present value is computed as follows:

Item	Year(s)	Amount of Cash Flows	12% Factor	Present Value of Cash Flows
Cost of new equipment	Now	\$(2,400,000)	1,000	\$(2,400,000)
Annual net cash inflow	1-8	\$500,000	4,968	<u>2,484,000</u>
Net present value				<u>\$ 84,000</u>

Yes the project is acceptable because it has a positive net present value.

3. The formula for computing the factor of the internal rate of return is:

A factor of 4,800 represents a rate of return of about 13%

4. The formula for the payback period is:

Exercise III

$$R = Stock A = (-5\%)(.2) + (20\%)(.6) + (40\%)(.2) = 19\%$$

$$Stock B = (10\%)(.2) + (15\%)(.6) + (20\%)(.2) = 15\%$$

Stock A

		(step 1)	(step 2)	(ste	p 3)
Return (r _i)	Probability (p _i)	$r_i p_i$	$(r_i - \overline{r})$	$(\mathbf{r}_{i} - \mathbf{\bar{r}})^{2}$	$(r_i - \overline{r})^2 pi$
-5%	.2	-1%	-24%	576	115.2
20	.6	12	1	1	.6
40	.2	8	21	441	88.2
		r̄ = 19%		σ^2	= 204
				(step 4) o	$r = \sqrt{204}$
				o	$\tau = 14.18\%$

Stock B

		(step 1)	(step 2)	(st	ep 3)
Return (r _i)	Probability (p _i)	$r_i p_i$	$(r_i - \overline{r})$	$(r_i - \bar{r})^2$	$(r_i - \overline{r})^2 pi$
10%	.2	2%	-5%	. 25	5
15	.6	9	0	0	0
20	.2	4	5	25	5
		r̄ = 15%		σ	$r^2 = 10$
				(step 4)	$\sigma = \sqrt{10}$
					$\sigma = 3.16\%$

Using the following data, we can compute the coefficient of variation for each stock as follows:

The coefficient of variation is computed as follows: For stock A,

$$\sigma/\bar{r} = 14.18/19 = .75$$

For stock B,

$$\sigma/\bar{r} = 3.16/15 = .21$$

Although stock A produces a considerably higher return than stock B, stock A is overall more risky than stock B, based on the computed coefficient of variation.

Exercise IV

A)

	L	XL	XXL	TOTAL	
sales mix	5/17	3/17	9/17	(=A+B+C)	
sales	\$ 500,000	\$ 300,000	\$ 900,000	\$ 1,700,000	100.000%
variable expenses	\$ 300,000	\$ 210,000	\$ 720,000	\$ 1,230,000	72.353%
CM	\$ 200,000	\$ 90,000	\$ 180,000	\$ 470,000	27.647%
fixed costs				\$ 250,000	calculated
budgeted operating income for month				\$ 220,000	given

breakeven sales \$ = fixed costs / CM ratio = \$250,000 / .27647 = \$904,257

B)
MOS (in sales \$) = total budgeted (or actual) sales \$ - breakeven sales \$ = \$1,700,000 - \$904,257 = \$795,743

C) degree of operating leverage = CM / operating income = \$470,000 / \$220,000 = 2.13636

D) sales \$ required for target profit of \$440,000 = (fixed costs + target income) / CM ratio = (\$250,000 + \$440,000) / .27647

= \$2,495,750

OR

% change in OI = % change in sales x operating leverage thus % change in sales = 100% / 2.13636 = 46.809% (100% change in OI = double OI) total sales dollars = % change in sales x current sales = 1.46809 x \$1,700,000 = \$2,495,753