A. MULTIPLE CHOICE QUESTIONS (30%)

1	Α
2	С
3	В
4	С
5	С
6	С
7	D
8	D
9	С
10	С

11	С
12	D
13	С
14	D
15	С
16	В
17	D
18	В
19	В
20	D

B. Exercises

Exercise # 1 (20%)

(a)

Sales	\$500 <i>,</i> 000
Less: Variable costs	<u>275,000</u>
СМ	\$225
	,000
Less: Fixed costs	<u>135,000</u>
Net income	\$ 90,000
Less: Income taxes	<u>36,000</u>
Projected 19A's after-tax	<u>\$ 54,000</u>
income	

(b) Break-even sales in units = $\frac{\$135,000}{\$25-\$13.75} = 12,000$ units

(c) After-tax net income for 19B = (Sales- Variable costs- Fixed costs) X (1 - Tax rate) = (\$550,000 - \$302,500- \$146,250) (1 - 0.4) = \$60,750

(d) Break-even sales in dollars = $\frac{\$146,250}{1-(\$13.75/\$25.00)} = \frac{\$146,250}{0.45} = \$325,000$

(e) Required 19B sales level = $\frac{\$146,250 + [\$54,000/(1 - 0.4)]}{0.45} = \frac{\$236,250}{0.45} = \$525,000$

(f) Let x = maximum advertising. Then

Sales	\$550,000 (22,000 @\$25)
Less: Variable costs	<u>302,500 (@\$13.75)</u>
CM	500 <i>,</i> \$247
Less: Fixed costs	<u>135,000</u>
Advertising	X
Net income before tax*	<u>\$100,000</u>
*\$100,000 = \$60,000/(1 - 0.	.4).

x is calculated as \$12,500.

Exercise # 2 (15%)

Year	Cash Inflow,	Cash Outflow,
1	\$800,000	\$550 <i>,</i> 000
2	\$790,000	\$590 <i>,</i> 000
3	\$920,000	\$600 <i>,</i> 000
4	\$870,000	\$610,000
5	\$650,000	\$390,000

Net cash flow after taxes calculation

			Net Cash	Depreciation				
		Cash	Flow Before	(Noncash	Net Income	Income	Not Incomo	Net Cash Flow
	Cash Inflow,	Outflow,	(2) = (1)	$(4) = 0.2 \times 10^{-10}$	Refere Taxos		After Taylor	Alter laxes, $(9)' = (2) (6)$
	(1)	(2)	$(3) = (1)^{-1}$	(4)=0.2 X,	belore rakes,	(6)=0.4X,	After Taxes,	(8) = (3)-(6)
		(-)	(2)	800,000	(5)=(3)-(4)	(5)	(7) = (5)-(6)	or (7)+(4)
Year								
1	\$800,000	\$550,000	\$250,000	\$160,000	\$ 90,000	\$36,000	\$54,000	\$214,000
2	\$790,000	\$590,000	\$200,000	\$160,000	\$ 40,000	\$16,000	\$24,000	\$184,000
3	\$920,000	\$600,000	\$320,000	\$160,000	\$160,000	\$64,000	\$96,000	\$256,000
4	\$870,000	\$610,000	\$260,000	\$160,000	\$100,000	\$40,000	\$60,000	\$220,000
5	\$650,000	\$390,000	\$260,000	\$160,000	\$100,000	\$40,000	\$60,000	\$220,000

The Net Present Value (NPV) is computed as follows:

Year	Net Cash Flow After Taxes,	10% PV Table Value,	Present Value,
0	\$(800,000)	1.000	\$(800,000)
1	\$214,000	0.909	\$194,526
2	\$184,000	0.826	\$151,984
3	\$256,000	0.751	\$192,256
4	\$220,000	0.683	\$150,260
5	\$220,000	0.621	\$136,620
		NPV	<u>\$ 25,646</u>

The company should buy the machine, since NPV is positive (\$25,646).

Exercise # 3 (10%)

1.

Cost of Goods Sold				
Beginning Inventory	\$ 400,000			
Purchases	1,900,000			
Cost of Goods Available	\$2,300,000			
Ending Inventory	500,000			
Cost of Goods Sold	\$1,800,000			
Average inventory = $\frac{\text{Beginning inventory} + \text{Ending inventory}}{2} = \frac{\$400,000 + \$500,000}{2} = \$450,000$ Inventory turnover = $\frac{\text{Cost of Goods Sold}}{\text{Average inventory}} = \frac{\$1,800,000}{\$450,000} = 4$				
Age of inventory = $\frac{365 \text{ days}}{\text{Inventory turnover}} = \frac{365 \text{ days}}{4}$	91.3 days			

2. River Company's inventory management improved in 19D, as evidenced by the higher turnover rate and decrease in the days that inventories were held. As a result, there is less liquidity risk. Further, the company's profitability will benefit by the increased turnover of merchandise.

<u>Exercise # 4 (18%)</u> Required:

1. Compute the return on total assets.

Return on total assets =

 $\frac{\text{Net income} + [\text{Interest expenses} \times (1 - \text{Tax rate})]}{\text{Average total assets}} = \frac{\frac{672 + [0 \times (1 - 0.36)]}{(5,344 + 54,429)/2}}{(5,344 + 54,429)/2} = 13.8\% \text{ (rounded)}$

2. Compute the return on common stockholders' equity.

Return on a common stockholders' equity = $\frac{\text{Net income - Preferred dividends}}{\text{Average common stockholders' equity}} = \frac{\$672 - \$0}{(\$2,284 + \$2,228)/2} = 29.8\% \text{ (rounded)}$

3. Compute the current ratio.

Current ratio = $\frac{\text{Current assets}}{\text{Current liabilities}} = \frac{\$1,696}{\$2,156} = 0.79 \text{ (rounded)}$

4. Compute the acid-test ratio.

Acid-test ratio =

Cash + Marketable securities + Accounts receivable + Short-term notes receivable =

Current liabilities

 $\frac{\$281 + \$157 + \$288 + \$0}{\$2,156} = 0.34 \text{ (rounded)}$

5. Compute the average sale period.

Average sale period = $\frac{365 \text{ days}}{\text{Inventory turnover}} = \frac{365 \text{ days}}{6.02} = 61 \text{ days (rounded)}$

6. Compute the debt-to-equity ratio.

Debt-to-equity ratio = $\frac{\text{Total liabilities}}{\text{Stockholders' equity}} = \frac{\$2,156 + \$904}{\$2,284} = 1.34$ (rounded)

Exercise # 5 (7%)

What is the WACC of Stability?

WACC = (10,000,000/25,000,000)*8%+ (10,000,000/25,000,000)*18% + (5,000,000/25,000,000)*15%

= 3.2% + 7.2 + 3 = 13.4%

Good Work!!