October 26, 2016 Extra Session
MULTIPLE CHOICE (40\%)

1.	C $\$ 150,000 / 5,000=\$ 30.00$
2.	A $(100+5,000-4,700) \times 30=\$ 12,000$
3.	D
4.	B
5.	D
6.	B
7.	C
8.	C
9.	B
10.	C
11.	B
12.	A
13.	B
14.	B
15.	D
16.	B
17.	D Predetermined overhead rate = Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=\$ 118,800 \div 22,000$ machine-hours $=\$ 5.40$ per machine-hour
18.	B Net change in cash and cash equivalents = Net cash provided by (used in) operating activities + Net cash provided by (used in) investing activities + Net cash provided by (used in) financing activities $-\$ 19,000=$ Net cash provided by (used in) operating activities - $\$ 9,000+\$ 16,000$ Net cash provided by (used in) operating activities $=-\$ 19,000+$ $\$ 9,000-\$ 16,000=-\$ 26,000$
19.	```C Return on common stockholders' equity = (Net income - Preferred dividends) \(\div\) Average common stockholders' equity \(12.5 \%=\) (Net income \(-\$ 16,000) \div(\$ 2,000,000-\$ 200,000)\) Net income \(-\$ 16,000=12.5 \% \times \$ 1,800,000\) Net income \(=12.5 \% \times \$ 1,800,000+\$ 16,000\) \(=\$ 225,000+\$ 16,000=\$ 241,000\)```
20.	A Variable cost per guest for supplies $=\$ 148.20 \div 57$ guests $=\$ 2.60$ per guest Variable cost per guest for laundry $=\$ 216.60 \div 57$ guests $=\$ 3.80$ per guest

Activity level
53 Guests
Variable overhead costs:
Supplies (\$2.60 per guest * 53 guests) \$ 137.80
Laundry (\$3.80 per guest * 53 guests) 201.40
Fixed overhead costs:
Utilities 170.00
Salaries and wages $\quad 4,310.00$
Depreciation $\quad \underline{2,340.00}$
Total overhead cost \$7,159.20

Question 1 Performance Measure (Product Profitability Analysis)

1. Margin of safety in units = Expected sales in units - breakeven sales in units

$$
\begin{aligned}
& =8,000 \\
& =5.500 \text { units }
\end{aligned}
$$

Margin of safety in dollars $=$ Expected sales in dollars - Breakeven sales in dollars

$$
\begin{aligned}
& =(8,000 \times \$ 10) \quad-(2,500 \times \$ 10) \\
& =\$ 55,000
\end{aligned}
$$

Margin of safety in units

Margin of safety as percentage $=-$ - - - - - - -

> Expected sales in units

$$
\begin{aligned}
& \text { 5,500 pairs } \\
= & ----- \\
& 8,000 \text { pairs } \\
= & 68.75 \%
\end{aligned}
$$

Fleet Foot's margin of safety is quite high. Sales have to fall by more than 5,500 units (or $\$ 55,000$) before fleet incurs a loss. Fleet will continue to earn a profit unless sales drop by more than 68.75%.
2. At its current level of volume, Fleet's operating income is as follows:

Contribution margin (8,000 pairs $\times \$ 4$ / pair) $\$ 32,000$
Less: fixed expenses
$(10,000)$
Operating income
\$22,000

Fleet's operating leverage factor at this level of sales is computed as follows:
Contribution margin $\$ 32,000$
Operating leverage factor $=-$ - $-----=----=1.45$ (rounded)
Operating income $\$ 22,000$

If sales volume declines by 25%, operating income will decline by 36.25% (Fleet's operating leverage factor of 1.45 multiplied by 25%).
3. If Fleet drops its sales price to $\$ 9$ per pair, its contribution margin per pair declines to $\$ 3$ (sales price of $\$ 9-$ variable cost of $\$ 6$). Each sale contributes less toward covering fixed costs. Fleet's new breakeven point increases to 3,334 pairs of socks ($\$ 10,000$ fixed cost $\div \$ 3$ unit contribution margin).
4.

	Hiking Socks	Dress Socks	Total
Sales price per unit	$\$ 9.00$	$\$ 7.00$	
Deduct: Variable expense per unit	(6.00)	(2.75)	
Contribution margin per unit	$\$ 3.00$	$\$ 4.25$	
Sales mix	X 1	X 4	5
Contribution margin	$\$ 3.00$	$\$ 17.00$	$\$ 20.00$
Weighted-average contribution margin per unit $(\$ 20 / 5)$			$\$ 4.00$

Fixed expenses + Operating income
$\begin{aligned} & \text { Sales in total units }=- \\ & \text { Weighted-average contribution margin per unit }\end{aligned}$

$$
\begin{aligned}
& \$ 10,000+\$ 0 \\
&=------=2,500 \text { pairs of socks } \\
& \$ 4
\end{aligned}
$$

Breakeven sales of dress socks $(2,500 \times 4 / 5)=2,000$ pairs of socks
Breakeven sales of hiking socks $(2,500 \times 1 / 5)=500$ pairs of hiking socks
By expanding its product line to include higher-margin dress socks, Fleet foot is able to decrease its breakeven point back to its original level (2,500 pairs). However, to achieve this breakeven point, Fleet Foot must sell the planned ratio of four pairs of dress socks to every one pair of hiking socks.

October 26, 2016 Extra Session
Question 2 Investment Decision (Capital Budgeting, Net Present Value) Solution:
After-tax cash benefit:

Cash benefit year	(a)	Depreciation	Taxable income	Income tax (b)	Net after- tax cash Inflow
1	$\$ 25,000$	$\$ 12,500$	$\$ 12,500$	$\$ 5,000$	$\$ 20,000$
2	25,000	12,500	12,500	5,000	20,000
3	25,000	12,500	12,500	5,000	20,000
4	25,000	12,500	12,500	5,000	20,000
1	$\$ 45,000$	$\$ 15,000$	$\$ 30,000$	$\$ 12,000$	$\$ 33,000$
2	19,000	15,000	4,000	1,600	17,400
3	25,000	15,000	10,000	4,000	21,000
4	25,000	15,000	10,000	4,000	21,000

Net Present Value

Year	Cash (Outflow) Inflow	Present Value of \$1 8 Percent	Net present value of cash flow
Machine 1			
0	\$(50,000)	1,000	\$(50,000)
1-4	20,000	3.312	66,240
		Net present value	\$ 16,240
Machine 2			
0	\$(60,000)	1,000	\$(60,000)
1	33,000	0.926	30,558
2	17,400	0.857	14,912
3	21,000	0.794	16,674
4	21,000	0.735	15,435
		Net present value	\$17,579

October 26, 2016 Extra Session

Question 3 Corporate Finance (Risk and Return)

SOLUTION

$$
\begin{gathered}
r=\sum r_{i} p_{i} \\
\sigma=\sqrt{\sum\left(r_{i}-\bar{r}\right)^{2} p_{i}}
\end{gathered}
$$

It is convenient to set up the following table:

$r_{i}(\%)$	p_{i}	$r_{i} p_{i}(\%)$	$\left(r_{i}-\bar{r}\right)(\%)$	$\left(r_{i}-\bar{r}\right)^{2}$	$\left(r_{i}-\bar{r}\right)^{2} p_{i}(\%)$
-20	0.1	-2	-32	1,024	102.4
5	0.2	1	-7	49	9.8
10	0.3	3	-2	4	1.2
25	0.4	$\underline{10}$	13	169	
		$\bar{r}=\underline{\underline{12}}$			$\sigma^{2}=\frac{67.6}{181}$

Since $\sigma^{2}=181, \sigma=\sqrt{181}=13.45 \%$.

Question 4 (Cash Budgeting)

- موازنـة المقبوضـات

ذم	آذار	شباط	كانون الثاني	إجمالي	بيان
0	0	32000	8000	40000	مبيعات كانون الثاني
0	36000	9000	0	45000	مبيعات شار
40000	10000	0	0	50000	مبيعات آذار
40000	46000	41000	8000	135000	

ذم	آذار	شباط	كانون الثاني	إجمالي	بيان
0	34000	0	0	34000	مشتريات كانون الثناني
42000	0	0	0	42000	مشتريات شباط
39000	0	0	0	39000	مشتريات آلذار
0	14000	14000	13000	41000	الرو اتب
2800	2800	2700	0	8300	الاعباء الاجنماعية
0	8000	0	0	8000	شر اء اصول ثابتة
83800	58800	16700	13000	172300	

3- مو ازنـة نقدية

آذار	شباط	كانون الثناني	بيان
46000	41000	8000	مقبوضات
58800	16700	13000	مدفو عات
69300	45000	50000	اول مدة
56500	69300	45000	آخر مدة

