February Exams 2019-Key

A- Multiple Choice Questions (50 \%)

1	B
2	C
3	B
4	D
5	D
6	B
7	C
8	A
9	\mathbf{D}
10	C

11	C
12	D
13	B
14	A
15	\mathbf{C}
16	\mathbf{C}
17	\mathbf{C}
18	\mathbf{D}
19	\mathbf{B}
20	\mathbf{C}

B- Problem Solving

Problem \# 1 (20 \%)

a. Calculate the Break-Even sales in units and in dollars.

Break-even point in units: $\frac{\$ 30,000}{\$ 8-\$ 5}=10,000$ units
Break-even point in dollars $=10,000$ units $\mathrm{X} \$ 8=\$ 80,000$
b. Calculate the margin of safety at the 12,000 unit level.

Margin of Safety $=\frac{12,000 \text { units }-10,000 \text { units }}{12,000 \text { units }}=16.7 \%$
c. Find the net income when sales are $\$ 120,000$

Sales	$\$ 120,000$
Variable costs	75,000
CM	$\$ 45,000$
Fixed costs	$\underline{30,000}$
Net income	$\underline{\$ 15,000}$

d. Compute the sales in units required to produce a net income of $\$ 10,000$

Target income volume $=\frac{\$ 30,000+\$ 10,000}{\$ 8-\$ 5}=13,333$ units
e. Compute the sales in units required to produce a net income of 10% of sales

Target income volume $=\frac{\$ 30,000}{\$ 8-\$ 5-(10 \%)(\$ 8)}=\frac{\$ 30,000}{\$ 2.2}=13,636$ units
f. Find the break-even in units if variable costs are increased by \$1 Per unit and if total fixed costs are decreased by \$5,000.

February Exams 2019 - Key

Break-even in units $=\frac{\$ 25,000}{\$ 8-\$ 6}=12,500$ units
Problem \#2 (14\%)
Payback period:

Recovery of the initial outlay				
Year	Cash Flow	Needed	Balance	Payback period in Years
1	$\$ 10,000$	$\$ 31,000$	$\$ 21,000$	1.00
2	$\$ 20,000$	$\$ 21,000$	$\$ 1,000$	1.00
3	$\$ 10,000$	1,000	--	$\underline{0.10}$
				$\underline{\underline{\underline{2.1}}}$

Net Present Value (NPV):

Year	Cash Flow	PV Factor at 14\%	PV
0	$\$(31,000)$	1.000	$\$(31,000)$
1	10,000	0.877	8,770
2	20,000	0.769	15,380
3	10,000	0.675	6,750
4	10,000	0.592	5,920
5	5,000	0.519	$\underline{\underline{2,595}}$
Net Present Value (NPV)			$\underline{\underline{\$ 8,415}}$

2. Under the NPY method, since the NPV is a positive $\$ 8,415$, Accept.

Problem \#3 (16 \%)

1. Return on total assets:

$$
\begin{aligned}
\text { Return on total assets } & =\frac{\text { Net income }+[\text { Interest expenses } \times(1-\text { Tax rate })]}{\text { Average total assets }} \\
& =\frac{\$ 672+[\$ 0 \times(1-0.36)]}{(\$ 5,344+\$ 4,429) / 2}==13.8 \%(\text { rounded })
\end{aligned}
$$

2. Return on common stockholders' equity:

Return on a common stockholders' equity $=\frac{\text { Net income }- \text { Preferred dividends }}{\text { Average common stockholders } \text { equity }}$

$$
=\frac{\$ 672-\$ 0}{(\$ 2,284+\$ 2,228) / 2}=29.8 \% \text { (rounded) }
$$

3. Current ratio:

Current ratio $=\frac{\text { Current assets }}{\text { Current liabilities }}=\frac{\$ 1,696}{\$ 2,156}=0.79$ (rounded)

4. Acid-test ratio:

$\begin{aligned} \text { Acid-test ratio } & =\frac{\text { Cash }+ \text { Marketable securities }+ \text { Accounts receivable }+ \text { Short-term notes receivable }}{\text { Current liabilities }} \\ & =\frac{\$ 281+\$ 157+\$ 288+\$ 0}{\$ 2,156}=0.34 \text { (rounded) }\end{aligned}$

5. Inventory turnover:

Inventory turnover $=\frac{\text { Cost of goods sold }}{\text { Average inventory balance }}$

$$
=\frac{\$ 3,999}{(\$ 692+\$ 636) / 2}=6.02(\text { rounded })
$$

6. Average sale period:

Average sale period $=\frac{365 \text { days }}{\text { Inventory turnover }}$

$$
=\frac{365 \text { days }}{6.02}=61 \text { days (rounded) }
$$

7. Debt-to-equity ratio:

$$
\begin{aligned}
\text { Debt-to-equity ratio }= & \frac{\text { Total liabilities }}{\text { Stockholders' equity }} \\
& =\frac{\$ 2,156+\$ 904}{\$ 2,284}=1.34 \text { (rounded) }
\end{aligned}
$$

